2,958 research outputs found

    Cloning and bioinformatics analysis of an ubiquitin gene of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae)

    Get PDF
    Ubiquitin which has the function of selective protein degradation may play an important role in the regulation of insect growth and development. The coding sequence of an ubiquitin gene from the larvae of the rice stem borer, Chilo suppressalis Walker (Lepidoptera: Pyralidae) named CsUB (GenBank Accession No. GU238420) was cloned by RT-PCR and sequenced in this study, with primers according to the sequences of ubiquitin genes  from Homo sapiens, Drosophila melanogaster and Lepidopteran insects. Sequence analysis showed that the length of the coding sequence is 228 bp, encoding 76 amino acids with calculated molecular weight of 8.50 kDa and the theoretical isoeletric point of 5.26. Signal sequence and transmembrane domain had not been found. Multiple sequence alignment indicated that CsUB gene sequence with other known gene sequences of invertebrates and vertebrates had a high degree of homology (more than 72% similarity) and a shorter genetic distance (lower than 0.360). During the genetic diversity analysis, the total of 104 polymorphic sites was detected from 18 ubiquitin gene sequences and 18 haplotypes were sorted. Abundant genetic diversity and strong codon usage bias were found by the haplotype diversity (1.000), average number of nucleotide differences (47.475), nucleotide diversity (0.20866), effective number of codons (44.526), codon bias index (0.559) and scaled Chi-square (0.779). The predicated secondary structure composition of CsUB protein had about 32.89% extended strands, 36.84% random colis, 15.79% alpha helixes and 14.47% beta turns. Subcellular localization analysis showed that CsUB protein of cytoplasm, cell nucleus, mitochondrion, cell skeleton and plasma membrane occupied about 47.80, 26.10, 17.40, 4.30 and 4.30%, respectively. Sequence, homology and structural analysis confirmed that CsUB gene was highly conserved during evolution and belonged to ubiquitin gene family. The results might provide some fundamental data for further studies on expressed characteristics and physiological functions of CsUB gene.Key words: Chilo suppressalis Walker, ubiquitin, gene cloning, bioinformatics

    Allelopathy of root exudates from different resistant eggplants to Verticillium dahliae and the identification of allelochemicals

    Get PDF
    Three eggplant cultivars were inoculated with Verticillium dahliae Kleb. to assess their resistance to Verticillium wilt. Solanum tor was resistant, “Liyuanziqie” was tolerant, and “Xi’anlvqie” susceptible. The disease incidence and disease index of Verticillium wilt and the amount of V. dahliae in rhizospheric soil, variation of microbial composition, the allelopathy of root exudates to mycelium growth of V. dahliae and the chemical substances of root exudates from eggplant cultivars with different resistance to Verticillium wilt were investigated in this experiment. The results showed that the root exudates of resistant type could not only affect the growth and development of V. dahliae, but also influence V. dahliae indirectly through regulating soil microbial community composition. This may be one of the reasons for the increase of disease resistance. However, the susceptible type exhibited an opposite trend. It was inferred that the resistant type contained some particular components, such as  acohd, amide, pyranoid, fluorene, while the susceptible one comprised more types of components, that is, ketone, phenol, ester and phenolic acid.Key words: Allelopathy, allelochemical, root exudates, eggplant, Verticillium dahliae, Verticillium wilt, microbial composition

    Direct multiple shoot induction and plant regeneration from dormant buds of Codonopsis pilosula (Franch.) Nannf.

    Get PDF
    An efficient and reproducible protocol for in vitro plant multiplication system via direct organogenesis from dormant buds of Codonopsis pilosula Nannf was developed. Multiple shoots were induced at a frequency of 75% after nine weeks on Murashige and Skoog (MS) medium supplemented with BAP (1.0 mg/l), NAA (0.5 mg/l), 3% sucrose and 0.7% agar. Approximately, 15 to 18 shoots were formed at the base of each dormant bud. Higher concentrations of BAP and NAA resulted in callus formation. Further development of shoot elongation and multiplication were also studied. Well-grown shoots of 2.8 cm height and 3.8 proliferation coefficient were achieved by sub-culturing on MS medium supplemented with 0.2 mg/l BAP and 0.05 mg/l IBA. At higher concentrations, BAP (0.5 mg/l) promoted higher shoot proliferation coefficient (4.2); however, it negatively affected shoot elongation. Further, low NAA concentration was beneficial to shoot proliferation. All in vitro-derived shoots measuring 2.5 to 3 cm in length, rooted when grown on ½MS (half of all MS elements) basal medium containing 1.5 mg/l IBA within 3 weeks, 100% of shoots developed roots and test-tube seedlings grew stout.Key words: Codonopsis pilosula, dormant bud, direct organogenesis, multiple shoot, shoot elongation, rooting

    Shared-network scheme of SMV and GOOSE in smart substation

    Get PDF

    Digit-only sauropod pes trackways from China - evidence of swimming or a preservational phenomenon?

    Get PDF
    For more than 70 years unusual sauropod trackways have played a pivotal role in debates about the swimming ability of sauropods. Most claims that sauropods could swim have been based on manus-only or manus-dominated trackways. However none of these incomplete trackways has been entirely convincing, and most have proved to be taphonomic artifacts, either undertracks or the result of differential depth of penetration of manus and pes tracks, but otherwise showed the typical pattern of normal walking trackways. Here we report an assemblage of unusual sauropod tracks from the Lower Cretaceous Hekou Group of Gansu Province, northern China, characterized by the preservation of only the pes claw traces, that we interpret as having been left by walking, not buoyant or swimming, individuals. They are interpreted as the result of animals moving on a soft mud-silt substrate, projecting their claws deeply to register their traces on an underlying sand layer where they gained more grip during progression. Other sauropod walking trackways on the same surface with both pes and manus traces preserved, were probably left earlier on relatively firm substrates that predated the deposition of soft mud and silt . Presently, there is no convincing evidence of swimming sauropods from their trackways, which is not to say that sauropods did not swim at all

    Controllable Synthesis of Single-Crystalline CdO and Cd(OH)2Nanowires by a Simple Hydrothermal Approach

    Get PDF
    Single-crystalline Cd(OH)2 or CdO nanowires can be selectively synthesized at 150 °C by a simple hydrothermal method using aqueous Cd(NO3)2 as precursor. The method is biosafe, and compared to the conventional oil-water surfactant approach, more environmental-benign. As revealed by the XRD results, CdO or Cd(OH)2 nanowires can be generated in high purity by varying the time of synthesis. The results of FESEM and HRTEM analysis show that the CdO nanowires are formed in bundles. Over the CdO-nanowire bundles, photoluminescence at ~517 nm attributable to near band-edge emission of CdO was recorded. Based on the experimental results, a possible growth mechanism of the products is proposed

    Regulation of Adipose Tissue Stromal Cells Behaviors by Endogenic Oct4 Expression Control

    Get PDF
    BACKGROUND: To clarify the role of the POU domain transcription factor Oct4 in Adipose Tissue Stromal Cells (ATSCs), we investigated the regulation of Oct4 expression and other embryonic genes in fully differentiated cells, in addition to identifying expression at the gene and protein levels. The ATSCs and several immature cells were routinely expressing Oct4 protein before and after differentiating into specific lineages. METHODOLOGY/PRINCIPAL FINDINGS AND CONCLUSIONS: Here, we demonstrated the role of Oct4 in ATSCs on cell proliferation and differentiation. Exogenous Oct4 improves adult ATSCs cell proliferation and differentiation potencies through epigenetic reprogramming of stemness genes such as Oct4, Nanog, Sox2, and Rex1. Oct4 directly or indirectly induces ATSCs reprogramming along with the activation of JAK/STAT3 and ERK1/2. Exogenic Oct4 introduced a transdifferentiation priority into the neural lineage than mesodermal lineage. Global gene expression analysis results showed that Oct4 regulated target genes which could be characterized as differentially regulated genes such as pluripotency markers NANOG, SOX2, and KLF4 and markers of undifferentiated stem cells FOXD1, CDC2, and EPHB1. The negatively regulated genes included FAS, TNFR, COL6A1, JAM2, FOXQ1, FOXO1, NESTIN, SMAD3, SLIT3, DKK1, WNT5A, BMP1, and GLIS3 which are implicated in differentiation processes as well as a number of novel genes. Finally we have demonstrated the therapeutic utility of Oct4/ATSCs were introduced into the mouse traumatic brain, engrafted cells was more effectively induces regeneration activity with high therapeutic modality than that of control ATSCs. Engrafted Oct4/ATSCs efficiently migrated and transdifferentiated into action potential carrying, functionally neurons in the hippocampus and promoting the amelioration of lesion cavities

    Evaluation of Two Models for Human Topoisomerase I Interaction with dsDNA and Camptothecin Derivatives

    Get PDF
    Human topoisomerase I (Top1) relaxes supercoiled DNA during cell division. Camptothecin stabilizes Top1/dsDNA covalent complexes which ultimately results in cell death, and this makes Top1 an anti-cancer target. There are two current models for how camptothecin and derivatives bind to Top1/dsDNA covalent complexes (Staker, et al., 2002, Proc Natl Acad Sci USA 99: 15387–15392; and Laco, et al., 2004, Bioorg Med Chem 12: 5225–5235). The interaction energies between bound camptothecin, and derivatives, and Top1/dsDNA in the two models were calculated. The published structure-activity-relationships for camptothecin and derivatives correlated with the interaction energies for camptothecin and derivatives in the Laco et al. model, however, this was not the case for several camptothecin derivatives in the Stacker et al. model. By defining the binding orientation of camptothecin and derivatives in the Top1/dsDNA active-site these results allow for the rational design of potentially more efficacious camptothecin derivatives
    corecore